

NATIONAL PH.D. PROGRAM IN AUTONOMOUS SYSTEMS

# **Optimization and control techniques for Energy management systems**

**Ph.D. candidate** Abdelilah Benrekia

Cycle

XL

**Tutors** Prof. Filippo D'Ippolito Prof. Antonino Sferlazza

### **1.** Description of the research program

The research program focuses on developing advanced control methodologies for power electronics in the context of hybrid and electric vehicle powertrains, with the primary goal of improving energy efficiency and promoting sustainable mobility. Leveraging recent advancements in silicon carbide (SiC) and gallium nitride (GaN) devices, this program addresses the challenges associated with high-speed switching and system stability in modern automotive power converters. Traditional control approaches, which rely on fixed switching frequencies, are insufficient for systems that incorporate both continuous and discrete dynamics, like those in automotive applications. Therefore, this program utilizes hybrid dynamical systems to provide a more comprehensive model that captures the complex dual dynamics of automotive powertrain converters, facilitating optimized energy distribution.

The initial phase of the program involves the design and development of two key converter prototypes: a fullbridge DC/DC isolated converter and a three-phase inverter, both of which utilize SiC and GaN technology. These converters play critical roles in automotive powertrains by connecting energy sources, such as batteries and supercapacitors, to the high-voltage bus and electric motors. Developing these prototypes enables experimental testing of control strategies under realistic conditions, forming the foundation for further model refinement and control optimization.

The program then progresses to creating hybrid mathematical models for these converters, representing them as switched affine systems. These models delineate between continuous "flow maps" and discrete "jump maps" to accurately capture the converters' dual-mode behavior, essential for achieving control precision. Additionally, these hybrid models account for nonlinearities and parasitic effects, providing a high-fidelity representation of real-world operating conditions.

With validated models, the program advances to optimizing the control strategies for individual converters. Lyapunov-based techniques are applied to establish control algorithms that ensure stability while minimizing switching events, a critical factor in reducing energy losses and thermal stress on components. This approach enhances the lifespan and efficiency of powertrain components by carefully balancing switching frequency with system performance.

For energy management across the entire vehicle powertrain, a supervisory control framework is developed using model-predictive control. This upper-level controller coordinates the flow of energy between various power sources (e.g., batteries, supercapacitors, and fuel cells) and loads (e.g., motors, lighting, and climate control) to maximize global efficiency across the powertrain. The supervisory controller sets reference signals for the lower-level controllers that manage individual components, ensuring cohesive and optimized energy distribution throughout the vehicle's systems.

In addition, hybrid observers are developed to estimate current using voltage transducers rather than physical current sensors, making the system more cost-effective and robust. For operational modes that are unobservable, persistent jumping and minimum dwell-time methods are incorporated to maintain observability across all system states, ensuring effective control without added hardware complexity.

The final phase of the program is dedicated to experimental validation, employing a scaled powertrain test setup to evaluate the control techniques' real-world effectiveness. This testing phase is essential for assessing the practical efficiency gains and validating the theoretical and simulation-based advancements achieved throughout the program.

Overall, this research program combines hybrid dynamical modeling, innovative control design, and practical experimentation to improve energy efficiency in automotive power electronics. By optimizing energy flow and minimizing switching losses, this program aims to make significant contributions to sustainable automotive technologies, enhancing the efficiency, durability, and adaptability of hybrid and electric vehicle powertrains.

## 2. Schedule of the research activities

| First         | academic | voor | (nlannad) |
|---------------|----------|------|-----------|
| <b>FIIS</b> U | academic | year | (plaineu) |

|                      | Description                                                                 | Period          | Activity abroad |
|----------------------|-----------------------------------------------------------------------------|-----------------|-----------------|
| Background study     | Study of dynamic hybrid systems, GaN and SiC power converters               | 11-2024/ 2-2025 | NO              |
| Problem<br>Statement | Preliminary problem formulation and introduction to the proposed solutions. | 3-2025/11-2025  | NO              |

#### Second academic year (planned)

|                       | Description                                                                                                                                                                                                                                                                                 | Period                                                   | Activity abroad |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------|
| Proposed<br>solutions | Development of Lyapunov-based control techniques<br>to optimize the efficiency of each converter<br>individually. Control laws based on Lyapunov<br>matrix-based min-projection will ensure uniform<br>asymptotic stability and minimize switching events,<br>increasing system efficiency. | 11-2025/12-<br>2025 (UNIPA)<br>1-2026/7-2026<br>(abroad) | YES             |
| Proposed solutions    | Developing a power management controller using<br>model-predictive control. This supervisory<br>controller will manage the energy flow between<br>power sources and power users in the vehicle                                                                                              | 8-2026/11-2026                                           | NO              |

#### Third academic year (planned)

|                          | Description                                                                 | Period         | Activity abroad |
|--------------------------|-----------------------------------------------------------------------------|----------------|-----------------|
| Simulations and analysis | Development of a simulation setup, analysis, and validation of the results. | 11-2026/5-2027 | NO              |
| Thesis writing           | Thesis writing, editing and submission.                                     | 6-2027/11-2027 | NO              |

# 3. Training and research activities plan

|    |                            | Description                                                    | Period                       | Final<br>Exam | ECTS |
|----|----------------------------|----------------------------------------------------------------|------------------------------|---------------|------|
| А. | Ph.D. courses              |                                                                |                              |               |      |
| В. | Master's degree<br>courses | Estimation, Filtering and System Identification                | March<br>2025 -<br>June 2025 | Yes           | 9    |
| C. | Soft skill courses         | Linear and nonlinear Kalman filtering: theory and applications | Feb 2025                     | Yes           | 2    |
|    |                            | Introduction to autonomous systems                             | June 2025                    | Yes           | 1    |

|    |                                                                     | Machine learning                                                                                 | Jan-Feb<br>2025 | Yes | 2   |
|----|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------|-----|-----|
|    |                                                                     | Introduction to autonomous systems                                                               | June 2025       | Yes | 1   |
|    |                                                                     | Simulation, optimization, and management of smart energy systems                                 | Sep 2025        | Yes | 1   |
| D. | Participation to seminars                                           | Innovations in Sustainable Energy Conversion<br>Technologies                                     | Nov 2024        |     | 0.5 |
|    |                                                                     | Introduction to dynamic control allocation                                                       | 2025            |     | 3   |
|    |                                                                     | Predictive Controllers within a Digital<br>Transformation framework                              | 2025            |     | 0.5 |
| F  | Participation to                                                    | Mediterranean Conference on Control and                                                          | June            |     |     |
| Ľ. | international<br>congresses or<br>workshops                         | Automation                                                                                       | 2025            |     | 2   |
|    |                                                                     | CDC: Conference on Decision and Control                                                          | Dec 2025        |     | 2   |
| F. | Presentation of                                                     | Automatica.it 2025                                                                               | Sep 2025        |     | 2   |
|    | research products at<br>international<br>congresses or<br>workshops | SIDRA 2025 Summer School                                                                         | July 2025       |     | 6   |
|    |                                                                     | TOTAL OF ECTS FOR TRAINING ACTIVITII                                                             | ES              |     | 32  |
| G. | Individual research<br>activity                                     | Research activity.                                                                               | 500h            |     | 20  |
| H. | Supervision of students                                             | Tutor of students during the master thesis development                                           | 25h             |     | 1   |
| I. | Integrative teaching activities                                     | Assistant professor during teaching activities                                                   | 25h             |     | 1   |
| J. | Preparation of<br>manuscripts for<br>conferences or<br>journals     | Preparation of manuscripts for journals, as research<br>products of individual research activity | 150h            |     | 6   |
|    | v                                                                   | TOTAL OF ECTS FOR RESEARCH ACTIVITY                                                              | IES             |     | 28  |
|    |                                                                     | TOTAL OF ECTS                                                                                    |                 |     | 60  |

### Second academic year (planned)

| Description                         | Period                                                                 | Final<br>Exam                                                                                      | ECTS                                                                                                                                                                                  |
|-------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Human autonomous system interaction |                                                                        | Yes                                                                                                | 2                                                                                                                                                                                     |
| Digital control                     |                                                                        | Yes                                                                                                | 6                                                                                                                                                                                     |
| Non-linear control                  | June 2026                                                              | Yes                                                                                                | 2                                                                                                                                                                                     |
|                                     |                                                                        |                                                                                                    |                                                                                                                                                                                       |
| SIDRA 2026 Summer School            | July 2026                                                              |                                                                                                    | 6                                                                                                                                                                                     |
|                                     | Human autonomous system interaction Digital control Non-linear control | Human autonomous system interaction       Digital control       Non-linear control       June 2026 | Human autonomous system interaction     Exam       Human autonomous system interaction     Yes       Digital control     Yes       Non-linear control     June 2026       Yes     Yes |

| F. | Presentation of<br>research products at<br>international<br>congresses or<br>workshops |                                                                                               |      |    |
|----|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------|----|
|    |                                                                                        | TOTAL OF ECTS FOR TRAINING ACTIVITII                                                          | ES   | 16 |
| G. | Individual research activity                                                           | Research activity.                                                                            | 950h | 38 |
| H. | Supervision of students                                                                | Tutor of students during the master thesis development                                        | 25h  | 1  |
| I. | Integrative teaching activities                                                        |                                                                                               |      |    |
| J. | Preparation of<br>manuscripts for<br>conferences or<br>journals                        | Articles concerning the research activity carried out for publication in scientific journals. | 125h | 5  |
|    | •                                                                                      | TOTAL OF ECTS FOR RESEARCH ACTIVITI                                                           | ES   | 44 |
|    |                                                                                        | TOTAL OF ECTS                                                                                 |      | 60 |

### Third academic year (planned)

|    |                                                                                        | Description                                                                                  | Period    | Final<br>Exam | ECTS |
|----|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------|---------------|------|
| A. | Ph.D. courses                                                                          |                                                                                              |           |               |      |
| B. | Master's degree<br>courses                                                             |                                                                                              |           |               |      |
| C. | Soft skill courses                                                                     |                                                                                              |           |               |      |
| D. | Participation to<br>seminars                                                           |                                                                                              |           |               |      |
| E. | Participation to<br>international<br>congresses or<br>workshops                        |                                                                                              |           |               |      |
| F. | Presentation of<br>research products at<br>international<br>congresses or<br>workshops | European Control Conference (ECC) 2027                                                       | June 2027 |               | 2    |
|    |                                                                                        | TOTAL OF ECTS FOR TRAINING ACTIVITII                                                         | ES        |               | 2    |
| G. | Individual research activity                                                           | Research activity and writing of the PhD thesis                                              | 1200h     |               | 48   |
| H. | Supervision of students                                                                | Tutor of students during the master thesis development                                       | 25h       |               | 1    |
| I. | Integrative teaching activities                                                        | Assistant professor during teaching activities                                               | 25h       |               | 1    |
| J. | Preparation of<br>manuscripts for<br>conferences or<br>journals                        | Articles concerning the research activity carried out for publication in scientific journals | 200h      |               | 8    |
|    | <b>v</b>                                                                               | TOTAL OF ECTS FOR RESEARCH ACTIVITI                                                          | ES        |               | 58   |
|    |                                                                                        | TOTAL OF ECTS                                                                                |           |               | 60   |

# 4. List of the publications written by the candidate in the triennium

Not yet

Ph.D. candidate name Abdelilah Benrekia

Tutor 1 name Prof. Filippo D'Ippolito

Tutor 2 name Prof. Antonino Sferlazza